SBTi.temperature_score
Module Contents
Classes
A scenario defines which scenario should be run. |
|
An engagement type defines how the companies will be engaged. |
|
A scenario defines the action the portfolio holder will take to improve its temperature score. |
|
This class is provides a temperature score based on the climate goals. |
- class SBTi.temperature_score.ScenarioType
Bases:
enum.Enum
A scenario defines which scenario should be run.
- TARGETS = 1
- APPROVED_TARGETS = 2
- HIGHEST_CONTRIBUTORS = 3
- HIGHEST_CONTRIBUTORS_APPROVED = 4
- static from_int(value) Optional[ScenarioType]
- class SBTi.temperature_score.EngagementType
Bases:
enum.Enum
An engagement type defines how the companies will be engaged.
- SET_TARGETS = 1
- SET_SBTI_TARGETS = 2
- static from_int(value) EngagementType
Convert an integer to an engagement type.
- Parameters
value – The value to convert
- Returns
- static from_string(value: Optional[str]) EngagementType
Convert a string to an engagement type.
- Parameters
value – The value to convert
- Returns
- class SBTi.temperature_score.Scenario
A scenario defines the action the portfolio holder will take to improve its temperature score.
- scenario_type :Optional[ScenarioType]
- engagement_type :EngagementType
- get_score_cap(self) float
- get_fallback_score(self, fallback_score: float) float
- static from_dict(scenario_values: dict) Optional[Scenario]
Convert a dictionary to a scenario. The dictionary should have the following keys:
number: The scenario type as an integer
engagement_type: The engagement type as a string
- Parameters
scenario_values – The dictionary to convert
- Returns
A scenario object matching the input values or None, if no scenario could be matched
- static from_interface(scenario_values: Optional[SBTi.interfaces.ScenarioInterface]) Optional[Scenario]
Convert a scenario interface to a scenario.
- Parameters
scenario_values – The interface model instance to convert
- Returns
A scenario object matching the input values or None, if no scenario could be matched
- class SBTi.temperature_score.TemperatureScore(time_frames: List[SBTi.interfaces.ETimeFrames], scopes: List[SBTi.interfaces.EScope], fallback_score: float = 3.2, model: int = 4, scenario: Optional[Scenario] = None, aggregation_method: SBTi.portfolio_aggregation.PortfolioAggregationMethod = PortfolioAggregationMethod.WATS, grouping: Optional[List] = None, config: Type[SBTi.configs.TemperatureScoreConfig] = TemperatureScoreConfig)
Bases:
SBTi.portfolio_aggregation.PortfolioAggregation
This class is provides a temperature score based on the climate goals.
- Parameters
fallback_score – The temp score if a company is not found
model – The regression model to use
config – A class defining the constants that are used throughout this class. This parameter is only required if you’d like to overwrite a constant. This can be done by extending the TemperatureScoreConfig class and overwriting one of the parameters.
- get_target_mapping(self, target: pandas.Series) Optional[str]
Map the target onto an SR15 target (None if not available).
- Parameters
target – The target as a row of a dataframe
- Returns
The mapped SR15 target
- get_annual_reduction_rate(self, target: pandas.Series) Optional[float]
Get the annual reduction rate (or None if not available).
- Parameters
target – The target as a row of a dataframe
- Returns
The annual reduction
- get_regression(self, target: pandas.Series) Tuple[Optional[float], Optional[float]]
Get the regression parameter and intercept from the model’s output.
- Parameters
target – The target as a row of a dataframe
- Returns
The regression parameter and intercept
- _merge_regression(self, data: pandas.DataFrame)
Merge the data with the regression parameters from the SBTi model.
- Parameters
data – The data to merge
- Returns
The data set, amended with the regression parameters
- get_score(self, target: pandas.Series) Tuple[float, float]
Get the temperature score for a certain target based on the annual reduction rate and the regression parameters.
- Parameters
target – The target as a row of a data frame
- Returns
The temperature score
- get_ghc_temperature_score(self, row: pandas.Series, company_data: pandas.DataFrame) Tuple[float, float]
Get the aggregated temperature score and a temperature result, which indicates how much of the score is based on the default score for a certain company based on the emissions of company.
- Parameters
company_data – The original data, grouped by company, time frame and scope category
row – The row to calculate the temperature score for (if the scope of the row isn’t s1s2s3, it will return the original score
- Returns
The aggregated temperature score for a company
- get_default_score(self, target: pandas.Series) int
Get the temperature score for a certain target based on the annual reduction rate and the regression parameters.
- Parameters
target – The target as a row of a dataframe
- Returns
The temperature score
- _prepare_data(self, data: pandas.DataFrame)
Prepare the data such that it can be used to calculate the temperature score.
- Parameters
data – The original data set as a pandas data frame
- Returns
The extended data frame
- _calculate_company_score(self, data)
Calculate the combined s1s2s3 scores for all companies.
- Parameters
data – The original data set as a pandas data frame
- Returns
The data frame, with an updated s1s2s3 temperature score
- calculate(self, data: Optional[pandas.DataFrame] = None, data_providers: Optional[List[TemperatureScore.calculate.data]] = None, portfolio: Optional[List[SBTi.interfaces.PortfolioCompany]] = None)
Calculate the temperature for a dataframe of company data. The columns in the data frame should be a combination of IDataProviderTarget and IDataProviderCompany.
- Parameters
data – The data set (or None if the data should be retrieved)
data_providers – A list of DataProvider instances. Optional, only required if data is empty.
portfolio – A list of PortfolioCompany models. Optional, only required if data is empty.
- Returns
A data frame containing all relevant information for the targets and companies
- _get_aggregations(self, data: pandas.DataFrame, total_companies: int) Tuple[SBTi.interfaces.Aggregation, pandas.Series, pandas.Series]
Get the aggregated score over a certain data set. Also calculate the (relative) contribution of each company
- Parameters
data – A data set, containing one row per company
- Returns
An aggregated score and the relative and absolute contribution of each company
- _get_score_aggregation(self, data: pandas.DataFrame, time_frame: SBTi.interfaces.ETimeFrames, scope: SBTi.interfaces.EScope) Optional[SBTi.interfaces.ScoreAggregation]
Get a score aggregation for a certain time frame and scope, for the data set as a whole and for the different groupings.
- Parameters
data – The whole data set
time_frame – A time frame
scope – A scope
- Returns
A score aggregation, containing the aggregations for the whole data set and each individual group
- aggregate_scores(self, data: pandas.DataFrame) SBTi.interfaces.ScoreAggregations
Aggregate scores to create a portfolio score per time_frame (short, mid, long).
- Parameters
data – The results of the calculate method
- Returns
A weighted temperature score for the portfolio
- cap_scores(self, scores: pandas.DataFrame) pandas.DataFrame
Cap the temperature scores in the input data frame to a certain value, based on the scenario that’s being used. This can either be for the whole data set, or only for the top X contributors.
- Parameters
scores – The data set with the temperature scores
- Returns
The input data frame, with capped scores
- anonymize_data_dump(self, scores: pandas.DataFrame) pandas.DataFrame
Anonymize the scores by deleting the company IDs, ISIN and renaming the companies.
- Parameters
scores – The data set with the temperature scores
- Returns
The input data frame, anonymized